87.2. Blowing up a point in A^{2}

$$
\begin{aligned}
& \{\text { Smooth projective curves }\} / \approx C\{k \mid \text { fig. ext. of } k \text { of trudy. } 1\} \\
& \tau_{\text {is }} . \\
& \begin{array}{c}
\uparrow 1: 1 \\
\{\text { curves }\} / \tilde{\pi}_{\text {binational equiv. }} .
\end{array}
\end{aligned}
$$

\Rightarrow up to an isomorphism, there is at most one smooth prjerice curve in each birational equivalent class of curves.

Question: Can we find ere, for each class?
Answer. Yes. (need to study blowing wop)
For given birational equivalent class, we choose a representation C which is projective plane curve.
Suppose \exists smooth prog. C^{\prime} sit. $C^{\prime} \sim c$ then \exists morphism

$$
C^{\prime} \rightarrow C .
$$

An answer the question, we only need so find such a morphism for C. resolve the singularities of a projective carve C
example:

Generally, consider the surface

$$
B=V(y-x z) \subseteq A^{b}
$$

\& projection map

$$
\pi: B \longrightarrow \mathbb{A}^{2}
$$

For give curve $C \subset \mathbb{A}^{2}$ with multiple pt at origin. We try to find a ace c^{\prime} on B st. C is "better" than C.

How an under stand B geometrically？？ $f: \mathbb{A}^{2} \cdots \mathbb{A}^{\prime}(x, y) \mapsto \frac{y}{x}$ with domain $U=\mathbb{A}^{2} \mid U(x)$ ．
\Rightarrow Graph of f ：

$$
\begin{aligned}
& G=\left\{(x, y, z) \in \mathbb{A}^{3} \mid y=x z, x \neq 0\right\} \subset \cup \times \mathbb{A}^{\prime} \subset \mathbb{A}^{2} \times \mathbb{A}^{\prime}=\mathbb{A}^{3} . \\
& \oint \\
& B:=\left\{(x, y, z) \in \mathbb{A}^{3} \mid y=x z\right\} \leftrightarrow \mathbb{A}^{3} \\
& \longrightarrow z=\frac{y}{x}!\quad B=\operatorname{var.}(\sin a \quad Y-x z=\operatorname{irr}!)
\end{aligned}
$$

$$
B=\text { closure of } G \operatorname{in} \mathbb{A}^{3}
$$

$$
\begin{aligned}
\pi & : B \rightarrow \mathbb{A}^{2} \\
\cdot & \operatorname{im}(\pi)=U \cup\{p\} \\
\cdot & \pi^{-1}(P)=\{(0,0, z) \mid z \in k\}=: L \\
\cdot & G=B \backslash L \\
\cdot & \pi: G \stackrel{\cong}{\Rightarrow} U
\end{aligned}
$$

－$/ A^{2} \xrightarrow[\varphi]{\mathscr{G}} B$
$(x, t) \xrightarrow{\mapsto}\left(x, x_{2}, z\right)$
通过 φ 可将 B 上的曲成拉四平面上。
sketch the real part for ane $c=V\left(Y^{2}-X^{2}(X+1)\right)$

理沦分析（ C^{\prime} is better than C ），

$$
\begin{aligned}
& C \subset / A^{2} \text { curve } \Rightarrow C_{0}:=C \cap \cup \cos C, \\
& \# \\
& V(x) \Rightarrow c_{0}^{\prime}:=\psi^{-1}\left(c_{0}\right) \\
& \Rightarrow c^{\prime}:=c l o s u r e ~ o f ~ \\
& c_{0}^{\prime} \text { in } A^{2}
\end{aligned}
$$

代数 $f: c^{\prime} \rightarrow c$ restriction of $\psi * c^{\prime}$ ．
$\Rightarrow f=$ birational marthism of c^{\prime} to c ．
i．e．$\tilde{f}=k(c)=k(x, y) \cong k\left(c^{\prime}\right)=k(x, z)$

Lem u): $\quad C=V(F), \quad F=F_{v}+F_{v+1}+\cdots+F_{n} \quad\left(F_{i}=\right.$ form of $d y i \operatorname{in} k\left(x x_{1}\right)$
$r=m_{p}(c) . \quad n=\operatorname{deg}(c)$. Then

$$
C^{\prime}=V\left(F^{\prime}\right)
$$

Where $F^{\prime}=F_{r}(1,2)+x F_{r+1}(1,2)+\cdots+x^{n-r} F_{n}(1,2)$
Pf:

$$
\left.\begin{array}{r}
\left.\begin{array}{r}
F(x, x z)=X^{r} F^{\prime} \\
F_{r}(1, z) \neq 0 \Rightarrow x \nmid F^{\prime}
\end{array}\right\} \Rightarrow C_{0}^{\prime} \subset V\left(F^{\prime}\right) \\
F=\text { in } \Rightarrow F^{\prime}=\text { in } \Rightarrow V\left(F^{\prime}\right)=\text { in }
\end{array}\right\} \Rightarrow V\left(F^{\prime}\right)=c^{\prime}
$$

Assumption: X is NOT tangent so C at P. (Coordinate chagig)
 \Rightarrow (multiplying F by a constavi) wMA:

$$
F_{r}=\prod_{i=1}^{\frac{S}{1}}\left(\frac{Y-\alpha_{i} X}{}\right)^{r_{i}}
$$

\longrightarrow tangents so F at P.
Lem (2) $f^{-1}(p)=p_{1}, \cdots, p_{s}$, where $p_{i}=\left(0, \alpha_{i}\right)$, and
$E \quad m_{p_{i}}\left(c^{\prime}\right) \leqslant I\left(p_{i}, c^{\prime} \cap E\right)=r_{i}$
米 if p is an ordinary mule $p t$ on C, then
$\quad P_{i}$ simple on C^{\prime} and $\operatorname{ord}_{p_{i}}^{C^{\prime}}(x)=1$.
Pf: $\quad f^{-1}(p)=c^{\prime} \cap E=\left\{(0, \alpha) \mid F_{r}(1, \alpha)=0\right\}$

$$
m_{p_{i}}\left(c^{\prime}\right) \leq I\left(p_{i}, F^{\prime} \cap x\right)=I\left(p_{i}, \prod_{i=1}^{s}\left(z-\alpha_{i}\right)^{r_{i}} n x\right)=r_{i}
$$

Lem（3），$\exists \underset{\sim}{\underset{\sim}{w}} \underset{\operatorname{Wos} C}{ } \operatorname{sit} \cdot W^{\prime}=f^{-1}(W) \operatorname{coc} C^{\prime}$ affine open sub var
（1）．$f\left(w^{\prime}\right)=w$
（2）$\Gamma\left(w^{\prime}\right) / \Gamma(w)=$ finite $w_{i c h} x^{r-1} \Gamma\left(w^{\prime}\right) \subset \Gamma\left(w^{\prime}\right)$

$$
\text { Pf: } \quad F=\sum_{i \neq j \geqslant r} a_{i j} X^{i} Y^{j} \quad H=\sum_{j \geqslant r} a_{0 j} Y^{j-r}
$$

To prove（1）\＆（2），ONTS：z integral over $\Gamma(w)$ ．ie．

$$
\begin{equation*}
z^{r}+b_{1} z^{r-1}+\cdots+b_{r}=0 \tag{*}
\end{equation*}
$$

for some $b_{1}, \cdots, b_{r} \in \Gamma(w)$

$$
\left.\left(\begin{array}{cl}
\text { Since } \Gamma\left(w^{\prime}\right)=\Gamma(w)[z] \Rightarrow & \Gamma\left(w^{\prime}\right)=\sum_{i=0}^{r-1} \Gamma(w) \cdot z^{i} \\
& x^{r-1} \cdot z^{i} \in \Gamma(w) \forall i \leqslant r-1
\end{array}\right\} \Rightarrow v\right)
$$

$$
\begin{aligned}
& h=H \bmod I(c) \in \Gamma(c) \text {. } \\
& \text { 的与的效息 } \\
& H(0,0)=1 \Rightarrow W=C_{h} \ni P \text { open affine in } C \text {. } \\
& \Rightarrow \omega^{-1}=f^{-1}(\omega)=C_{n}^{\prime} \text { open fere in } C^{\prime}
\end{aligned}
$$

$$
\begin{aligned}
& F^{\prime}(x, z)=\sum_{i+j=r} a_{i j} x^{i+j-r} z^{\bar{j}}=\sum_{i+j \geqslant r} a_{i j} y^{i+j-r} z^{r-i} \\
&=\sum_{i=0}^{r-1}\left(a_{i j} y^{i+j-r}\right) \cdot z^{r-i}+\sum_{\substack{i \neq r \\
i+j \geqslant r}} a_{i j} x^{i-r} y^{\bar{j}} \\
&\left\{\begin{array}{l}
b_{i}=\frac{1}{h} \sum_{j} a_{i j} y^{i+j-r} \quad 1 \leqslant \bar{i}<r \\
b_{r}=\frac{1}{h} \sum_{i \geqslant r r} a_{i j} x^{i-r} y^{\bar{j}}
\end{array}\right. \\
& F^{\prime}(x, z)=0 \Rightarrow z^{r}+b_{1} z^{r-1}+\cdots+b_{r}=0 \quad!
\end{aligned}
$$

Rok: 1) W, W^{\prime} can be taken attitranily small.

2) (linen dane of coordinates) assume W includes any feer of pt on C we wish.

$$
\begin{aligned}
& (X, Y) \mapsto(X+\alpha Y, Y) \\
& \quad \biguplus \text { zeros of } H: \quad(X, Y) \mapsto(X, Y+\beta X)
\end{aligned}
$$

$\delta 7.3$ Blowing up Points in \mathbb{P}^{2}
aim: blow up points $p_{1}, \cdots, p_{t} \in \mathbb{P}^{2}$. ie. replace each by a prinective line

$$
\text { WMA }=P_{i}=\left[a_{i}: a_{i 2}: 1\right] \in U_{3} \quad \forall i=1, \cdots, t .
$$

B

$$
\begin{align*}
U:= & \mathbb{P}^{2} \backslash\left\{P_{1}, \cdots, P_{t}\right\} \text {. Define } \\
& f_{i}=U \rightarrow \mathbb{P}^{\prime} \quad\left[x_{1}: x_{2}: x_{3}\right] \mapsto\left[x_{1}-a_{i} x_{3}: x_{2}-a_{i_{2}} x_{3}\right] \tag{}
\end{align*}
$$

and

$$
\begin{aligned}
& f=\left(f_{1}, f_{2} \cdots \cdot f_{t}\right): U \rightarrow \overbrace{\mathbb{P}^{\prime} \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime}}^{t} \\
& G:=\text { graph of } f \subseteq U \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime}
\end{aligned}
$$

X_{1}, X_{2}, X_{3} homogeneous coordinates for \mathbb{P}^{2} $Y_{i_{1}}, Y_{X_{2}}$ homogeneous coordinates for isth \mathbb{P}^{\prime}

$$
-\quad .1 r . .
$$

$$
\begin{aligned}
B: & =V\left(\left\{Y_{i_{1}}\left(X_{2}-a_{i_{2}} x_{3}\right)-Y_{i_{2}}\left(X_{1}-a_{i_{1}} X_{3}\right) \mid i=1, \cdots x\right\}\right) \\
& \subseteq \mathbb{P}^{2} \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime}
\end{aligned}
$$

Fact: B is the closure of G in $\mathbb{P}^{2} \times \mathbb{P}^{\prime} \times \ldots \times \mathbb{P}^{\prime}$ (sep) In particular, B i a variety.

$$
E_{i} \xrightarrow{\sim} \mathbb{P}^{\prime}
$$

Step 2. $G=B \cap\left(U \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime}\right)=B \mid \bigcup_{i=1}^{t} E_{i}$
In particular,

$$
B \mid \bigcup_{i=1}^{\star} E_{i} \xrightarrow[\cong]{\cong} \cup
$$

Step 3. $T=$ projective change of coordinates of \mathbb{P}^{2}.

$$
\begin{aligned}
& P_{i}^{\prime}:=T\left(P_{i}\right) \\
& f_{i}^{\prime}: \mathbb{P}^{\prime} \backslash\left\{P_{1}^{\prime}, \cdots, P_{t}^{\prime}\right\} \rightarrow \mathbb{P}^{\prime} \text { as in }(*) . \\
& f^{\prime}=\left(f_{1}^{\prime}, \cdots, f_{\pi}^{\prime}\right), G^{\prime}, B^{\prime}, z_{i}^{\prime}
\end{aligned}
$$

Then

1) \exists ! prod. change of coordinates T_{i} of \mathbb{P}_{1} st. $T_{i} \circ f_{i}=f_{i}^{\prime} \circ T$
2). $\left(T_{1} \times \cdots \times T_{\star}\right) \circ f=f^{\prime} \circ T$
3). $G, B, E_{i} \xrightarrow{T \times T_{1} \times \cdots \times T_{t}} G^{\prime}, B^{\prime}, E_{i}^{\prime}$

$\downarrow f=\left(f_{1}, \cdots, f_{\pi}\right) \quad f^{\prime}=\left(f_{1}^{\prime}, \cdots, f_{\tau}^{\prime}\right)$

Step 4. $T_{\bar{N}}=$ prop. change of coordinates of \mathbb{P}^{\prime} (for one i). Thew \exists proc. change of coordinates T of \mathbb{P}^{2} sit.

$$
\left\{\begin{array}{l}
T\left(p_{i}\right)=p_{i} \\
f_{i} \circ T=T_{i} \circ f_{i}
\end{array}\right.
$$

Step 5. Study the behavior of π around some $p t \quad Q \in E_{i}$.

Then φ is a murshism and
$U=U_{3}\left(P_{2} \cdots P_{c}\right)$

$$
\begin{aligned}
& s \text { a marrghism and } \\
& \pi \circ \varphi=\varphi_{3} \circ 4 . \quad=B \backslash\left(\bigcup_{i n} E_{i}\right.
\end{aligned}
$$

$$
\varphi_{3}^{-1}(v)=: w \xrightarrow[\varphi_{3}]{\downarrow} \mathbb{P}^{2}
$$

Step 6. $B=$ closure of G in $\mathbb{P}_{\times}^{2} \times \mathbb{P}_{\times \cdots \times \mathbb{P}^{\prime}}(\Rightarrow B=$ var. $)$ of: $\forall S \leftrightarrow \mathbb{P}^{2} \times \ldots \times \mathbb{P}^{\prime}$ with $G \subseteq s$. then

$$
\begin{aligned}
& \text { WOG: } i=1 \text { and } P_{1}=[0: 0: 1] \quad Q=[\lambda: 1] \in \mathbb{P}^{\prime} \lambda \in k \\
& \varphi_{3}: \mathbb{A}^{2} \xlongequal{\leftrightharpoons} U_{3} \Leftrightarrow \mathbb{P}^{2}(x, y) \mapsto[x: y: 1] \\
& V:=U_{3} \backslash\left\{p_{2}, \ldots, p_{t}\right\} \ni p_{1} \\
& W:=\varphi_{3}^{-1}(V) \subset A^{2} \\
& \psi=\mathbb{A}^{2} \rightarrow \mathbb{A}^{2} \quad(x, z) \mapsto(x, x z) \\
& w^{\prime}:=\psi^{-1}(w) \\
& \varphi: W^{\prime} \rightarrow \mathbb{P}^{2} \times \mathbb{P}^{\prime} \times \cdots \times \mathbb{P}^{\prime} \\
& (x, z) \mapsto\left([x: x z=1],[1: z], f_{2}([x: x z=1]), \cdots, f_{x}([x ; z:=1)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \varphi^{-1}(s) \leftrightarrow w^{\prime} \& \varphi^{-1}(s) \supset \varphi^{-1}(\sigma)=w^{\prime} \backslash v(x) \bigoplus w^{\prime} \\
& \Rightarrow \varphi^{-1}(s)=w^{\prime} \Rightarrow \\
& Q \in S \Rightarrow B \subset S .
\end{aligned}
$$

Step 7. locally $\pi: B \rightarrow \mathbb{P}^{2}$ looks like $\psi: A^{2} \rightarrow A^{2}$ (in $\delta 7 z^{2}$)

The inverse morphion of φ is (the restriction to V^{\prime} of)

$$
\begin{aligned}
\mathbb{P}^{2} \times \ldots \times \mathbb{P}^{\prime} \backslash V\left(x_{3} y_{2}\right) & \longrightarrow \mathbb{A}^{2} \\
\left(\left[x_{1}: x_{2}: x_{3}\right],\left[y_{1} ; y_{12}\right], \cdots\right) & \longmapsto\left(x_{1} / x_{3}, y_{11} / y_{n}\right)
\end{aligned}
$$

Step 8. $C \subset \mathbb{P}^{2}$ ir curve.

$$
c_{0}:=C \cap \cup, \quad C_{0}^{\prime}:=\pi^{-1}\left(c_{0}\right) \subset G
$$

$C^{\prime}:=$ closing of C_{0}^{\prime} in B.
π m $: c^{\prime} \rightarrow c$ (birational morphism)

$$
\begin{array}{cc}
\oint & \oint \\
c_{0}^{\prime} & \stackrel{y}{\leftrightarrows} \\
c_{0}
\end{array}
$$

f looks like the affine map in $\$ 7.2$.

Pup 1. $C=$ irs. prog. plane curve.
Suppose all multiple pts of C are ordinand. Then \exists birational morphism $f=c^{\prime} \rightarrow C$ τ nonsingular projective.

Pf: apply (8) $\Rightarrow f: c^{\prime} \rightarrow c$
Step 2 in $\$ 7.2 \Rightarrow c^{\prime}$ nonsingular.

